Cálculo do torque de tração em um veículo automotor
5 de maio, 2022 às 11:25 | Postado em Atrito, Mecânica, Mecânica de fluidos
Respondido por: Prof. Fernando Lang da Silveira - www.if.ufrgs.br/~lang/Eu vi na postagem Torque necessário para tirar o veículo do repouso o cálculo de torque onde a equação é Τtraçao= α.M.g.R, onde alfa é o coeficiente de resistência ao rolamento dos pneus, M é a massa do veículo em kg, g é força da gravidade e R raio da roda em metro. Gostaria de saber a equação acrescentando ângulo de inclinação do plano de rodagem.
Grato
Das equações 7 e 26 do artigo Potência de tração de um veículo automotor que se movimenta com velocidade constante é obtida a equação para o torque de tração (Τtraçao) em um veículo automotor:
Τtraçao ≈ (α.P.cosθ + P.senθ + ½ρ.C.S.v2).R , (1)
onde α é o coeficiente de resistência ao rolamento dos pneus, P é o peso do veículo, θ é o ângulo de inclinação da pista de rolamento, ρ é densidade do ar, C é o coeficiente de resistência aerodinâmica do veículo, S é a área frontal do veículo, v é o valor da velocidade do veículo em relação ao ar e R é o raio da roda do veículo.
A equação 1 se reduz a Τtraçao ≈ α.P.R quando a pista não é inclinada e o termo que envolve a velocidade (a resistência oferecida pelo ar) é desprezível, isto é, para pequenas velocidades do veículo prepondera a resistência ao rolamento. Vide a discussão no final da secção 5 do artigo Potência de tração …. Na secção 7 do artigo as rampas são levadas em consideração.
Finalmente, dado que o coeficiente de resistência ao rolamento de pneus sobre o asfalto é aproximadamente 0,01, e como nas rodovias BRs a inclinação máxima é cerca de 3° (vide Por que a inclinação máxima nas BRs não deve exceder 3 graus?), a resistência gravitacional em aclives com tal inclinação exige um torque de tração P.senθ.R (conforme a equação 1), resultando ser este torque 5 vezes maior do que o torque de tração α.P.R necessário para superar a resistência ao rolamento.
“Docendo discimus.” (Sêneca)